Пятница, 03.05.2024, 09:51
Приветствую Вас Гость | RSS

Выращивание кристаллов в домашних условиях

Меню сайта
Информация
Календарь
«  Май 2024  »
ПнВтСрЧтПтСбВс
  12345
6789101112
13141516171819
20212223242526
2728293031
Опубликовать
Интересное
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Форма входа

глава 3

Внимание!! Это займет всего пару секунд. Вы мне здорово поможете, если кликните на пару рекламных ссылок в левой колонке!!

глава 3

Геометрия кристаллов
Кристаллы одни из самых красивых и загадочных творений природы. В настоящее время изучением многообразия кристаллов занимается наука кристаллография. Она выявляет признаки единства в этом многообразии, исследует свойства и строение как одиночных кристаллов, так и кристаллических агрегатов. Кристаллография является наукой, всесторонне изучающей кристаллические веществ

Симметрия в кристаллах.
Рассматривая различные кристаллы мы видим ,что все они разные по форме, но любой из них представляет симметричное тело. И действительно симметричность это одно из основных свойств кристаллов. К понятию о симметрии мы привыкли с детства. Симметричными мы называем тела, которые состоят из равных одинаковых частей. Наиболее известными элементами симметрии для нас являются плоскость симметрии,ось симметрии,центр симметрии


В зависимости от характера преобразования различают элементы симметрии I и II рода. Элементы симметрии I рода связывают друг с другом равные фигуры, то есть фигуры, которые совмещаются при наложении. Элементы симметрии II рода связывают друг с другом фигуры зеркально равные.

Элементы симметрии I рода

К элементам симметрии I рода относятся поворотные оси симметрии.

Ось симметрии (L) – это линия, при повороте вокруг которой на определенный угол, кристалл совмещается сам с собой. Симметричное преобразование, отвечающее оси симметрии, есть поворот.

По углу поворота различают порядок оси симметрии. Минимальный угол поворота, при котором происходит совмещение фигуры, называется элементарным углом поворота оси.

Если элементарный угол поворота равен 180°, то порядок оси равен. Такая ось называется осью симметрии второго порядка. В треугольнике – ось симметрии 3 порядка; в квадрате – 4; в пятиугольнике – 5; в шестиугольнике – 6. На опыте установлено, что в кристаллах не может быть осей 5 порядка и порядка выше 6, т. е. 7, 8 …, хотя в живой природе они существуют: цветок лютика или морскую звезду характеризует ось 5 порядка, а осьминога – 8 порядка. Порядок оси симметрии ромашки или подсолнечника равен числу лепестков цветка. В геометрических фигурах также возможны оси симметрии любого порядка. У круглого конуса или цилиндра есть ось симметрии бесконечного порядка. А у шара бесконечное число осей симметрии бесконечного порядка.

Основной закон симметрии кристаллов

Доказательством закона служит невозможность существование параллелограмматической системы, состоящей из элементарных ячеек, обладающих осями симметрии 5-го и выше 6-го порядков, поскольку нельзя заполнить все пространство без остатка правильными 5-ти и 7, 8, 9 … n – угольниками.Cуть основного закона симметрии кристаллов – в кристаллах невозможны оси 5-го и выше 6-го порядков.

Оси 1 и 2-го порядка называются осями низшего порядка, 3, 4 и 6-го – осями высшего порядков.

Оси симметрии могут проходить через центры граней, через середины ребер, через вершины. На рисунке приведены оси симметрии куба.

Три оси 4 порядка проходят через центры граней; четыре оси 3 порядка являются пространственными диагоналями куба: шесть осей 2 порядка соединяют попарно середины ребер. Всего в кубе имеется 13 осей симметрии.


К элементам симметрии II рода относятся: центр симметрии (центр инверсии), плоскость симметрии (зеркальная плоскость), а также сложные элементы симметрии – зеркально-поворотные и инверсионные и инверсионные оси.





Центр симметрии (С) – это точка внутри кристалла, по обе стороны от которой на равных расстояниях встречаются одинаковые точки кристалла. Симметричное преобразование, отвечающее центру симметрии, есть отражение в точке (зеркало – не плоскость, а точка). При таком отражении изображение поворачивается не только справа налево, но и с лица на изнанку (рисунок). Белым и синим цветом изображены, соответственно, «лицевая» и «изнаночная» стороны фигуры.
Очень часто центр симметрии совпадает с центром тяжести кристалла.


В кристаллическом многограннике можно найти разные сочетания элементов симметрии – у одних мало, у других много. По симметрии, прежде всего по осям симметрии, кристаллы делятся на три категории.

К высшей категории относятся самые симметричные кристаллы.К таким формам относятся куб, октаэдр, тетраэдр и др. Им всем присуща общая черта: они примерно одинаковы во все стороны,

К средней категории относятся средне симметричные кристаллы. Формы этих кристаллов: призмы, пирамиды и др. Общая черта: резкое различие вдоль и поперек главной оси симметрии.

К низшей категории относятся кристаллы менее симметричные не имеющие оси симметрии.Структура данных кристаллов самая сложная



К кристаллам высшей категории относятся: алмаз, квасцы, гранаты ,германий, кремний, медь, алюминий, золото, серебро, серое олово,вольфрам, железо

(алмаз)

(гранат)

(вольфрам)
к средней категории – графит, рубин, кварц, цинк, магний, белое олово, турмалин,берилл

(рубин)

(кварц)

(цинк)

(германий)
к низшей – гипс, слюда, медный купорос, сегнетовая соль и др.


(гипс слева сверху)

(слюда справа верху)

(медный купорос)
Конечно в этом списке не были перечислены все существующие кристаллы, а только наиболее известные из них.



Категории в свою очередь разделяются на семь сингоний.
Каждый кристаллический многогранник обладает определенным набором элементов симметрии. Полный набор всех элементов симметрии, присущих данному кристаллу называется классом симметрии. Сколько же всего таких наборов? Их количество ограничено. Математическим путем было доказано, что в кристаллах существует 32 вида симметрии.


Форма кристаллов.
Изучение внешней формы кристаллов началось прежде изучения симметрии, однако только после вывода 32 видов симметрии появилась надежная основа для создания геометрического учения о внешней форме кристаллов. Основным его понятием является понятие простой формы.
"Простой формой называется многогранник, который может быть получен из одной грани с помощью элементов симметрии(оси, плоскости и центра симметрии)".


Дислокация – это нарушение правильности расположения атомов в структуре вдоль определенной линии



(на рисунке показаны три параллельные дислокации)


Строение кристаллов.

В зависимости от строения, кристаллы делятся на ионные, ковалентные, молекулярные и металлические. Ионные кристаллы построены из чередующихся катионов и анионов, которые удерживаются в определенном порядке силами электростатического притяжения и отталкивания.

Электростатические силы ненаправленные: каждый ион может удержать вокруг себя столько ионов противоположного знака, сколько помещается. Но при этом силы притяжения и отталкивания должны быть уравновешены и должна сохраняться общая электронейтральность кристалла. Все это с учетом размеров ионов приводит к различным кристаллическим структурам. Так, при взаимодействии ионов Na+ и Cl– возникает октаэдрическая координация: каждый ион удерживает около себя шесть ионов противоположного знака, расположенных по вершинам октаэдра.Ионные кристаллы образуют большинство солей неорганических и органических кислот, оксиды, гидроксиды, соли. В ионных кристаллах связи между ионами прочные, поэтому такие кристаллы имеют высокие температуры плавления (801° С для NaCl, 2627° С для СаО).

В ковалентных кристаллах (их еще называют атомными) в узлах кристаллической решетки находятся атомы, одинаковые или разные, которые связаны ковалентными связями








(кристаллическая решетка льда)


Эти связи прочные и направлены под определенными углами. Типичным примером является алмаз; в его кристалле каждый атом углерода связан с четырьмя другими атомами, находящимися в вершинах
тетраэдра. Ковалентные кристаллы образуют бор, кремний, германий, мышьяк, ZnS, SiO2, ReO3, TiO2, CuNCS.

Молекулярные кристаллы построены из изолированных молекул, между которыми действуют сравнительно слабые силы притяжения. В результате такие кристаллы имеют намного меньшие температуры плавления и кипения, твердость их низка. Так, кристаллы благородных газов (они построены из изолированных атомов) плавятся уже при очень низких температурах. Из неорганических соединений молекулярные кристаллы образуют многие неметаллы (благородные газы, водород, азот, белый фосфор, кислород, сера, галогены), соединения, молекулы которых образованы только ковалентными связями (H2O, HCl, NH3, CO2 и др.). Этот тип кристаллов характерен также почти для всех органических соединений. Прочность молекулярных кристаллов зависит от размеров и сложности молекул. Так, кристаллы гелия (радиус атома 0,12 нм) плавятся при –271,4°С (под давлением 30 атм), а ксенона (радиус 0,22 нм) – при –111,8° С; кристаллы фтора плавятся при –219,6° С, а иода – при +113,6° С; метана СН4 – при –182,5° С, а триаконтана С30Н62 – при +65,8° С.


Металлические кристаллы образуют чистые металлы и их сплавы. Такие кристаллы можно увидеть на изломе металлов, а также на поверхности оцинкованной жести. Кристаллическая решетка металлов образована катионами, которые связаны подвижными электронами («электронным газом»). Такое строение обусловливает электропроводность, ковкость, высокую отражательную способность (блеск) кристаллов. Структура металлических кристаллов образуется в результате разной упаковки атомов-шаров. Щелочные металлы, хром, молибден, вольфрам и др. образуют объемноцентрированную кубическую решетку; медь, серебро, золото, алюминий, никель и др. – гранецентрированную кубическую решетку (в ней помимо 8 атомов в вершинах куба имеются еще 6, расположенные в центре граней); бериллий, магний, кальций, цинк и др. – так называемую гексагональную плотную решетку (в ней 12 атомов расположены в вершинах прямоугольной шестигранной призмы, 2 атома – в центре двух оснований призмы и еще 3 атома – в вершинах треугольника в центре призмы).

Рост кристаллов
Многие видные ученые, внесшие большой вклад в развитие химии, минералогии, других наук, начинали свои первые опыты именно с выращивания кристаллов. Помимо чисто внешних эффектов, эти опыты заставляют задумываться на тем, как устроены кристаллы и как они образуются, почему разные вещества дают кристаллы разной формы, а некоторые вовсе не образуют кристаллов, что надо сделать, чтобы кристаллы получились большими и красивыми.
Вот простая модель, поясняющая суть кристаллизации. Представим, что в большом зале укладывают паркет. Легче всего работать с плитками квадратной формы – как ни поверни такую плитку, она все равно подойдет к своему месту, и работа пойдет быстро. Именно поэтому легко кристаллизуются соединения, состоящие из атомов (металлы, благородные газы) или небольших симметричных молекул. Такие соединения, как правило, не образуют некристаллических (аморфных) веществ.

Труднее выложить паркет из прямоугольных дощечек, особенно если у них с боков имеются пазы и выступы – тогда каждую дощечку можно уложить на свое место одним единственным способом. Особенно трудно выложить паркетный узор из дощечек сложной формы.

Если паркетчик очень торопится, то плитки будут поступать к месту укладки слишком быстро. Понятно, что правильного узора теперь не получится: если хотя бы в одном месте плитку перекосит, то дальше все пойдет криво, появятся пустоты (как в старой компьютерной игре «Тетрис», в которой «стакан» заполняется деталями слишком быстро). Ничего хорошего не получится и в том случае, если в большом зале начнут укладывать паркет сразу десяток мастеров – каждый со своего места. Даже если они будут работать не спеша, крайне сомнительно, чтобы соседние участки оказались хорошо состыкованными, и в целом, вид у помещения получится весьма неприглядным: в разных местах плитки расположены в разном направлении, а между отдельными участками ровного паркета зияют дыры.

Примерно те же процессы происходят и при росте кристаллов, только сложность здесь еще и в том, что частички должны укладываться не в плоскости, а в объеме. Но ведь никакого «паркетчика» здесь нет – кто же укладывает частички вещества на свое место? Оказывается, они укладываются сами, потому что непрерывно совершают тепловые движения и «ищут» самое подходящее для себя место, где им будет наиболее «удобно». В данном случае «удобство» подразумевает также и наиболее энергетически выгодное расположение. Попав на такое место на поверхности растущего кристалла, частица вещества может там остаться и через некоторое время оказаться уже внутри кристалла, под новыми наросшими слоями вещества. Но возможно и другое – частица вновь уйдет с поверхности в раствор и снова начнет «искать», где ей удобнее устроиться.

Каждое кристаллическое вещество имеет определенную свойственную ему внешнюю форму кристалла.

Например, для хлорида натрия эта форма – куб, для алюмокалиевых квасцов – октаэдр. И даже если сначала такой кристалл имел неправильную форму, он все равно рано или поздно превратится в куб или октаэдр. Более того, если кристалл с правильной формой специально испортить, например, отбить у него вершины, повредить ребра и грани, то при дальнейшем росте такой кристалл начнет самостоятельно «залечивать» свои повреждения. Происходит это потому, что «правильные» грани кристалла растут быстрее, «неправильные» – медленнее. Чтобы убедиться в этом, был проведен такой опыт: из кристалла поваренной соли выточили шар, а потом поместили его в насыщенный раствор NaCl; через некоторое время шар сам постепенно превратился в куб! Рис. 6 Формы кристаллов некоторых минералов

Если процесс кристаллизации идет не слишком быстро, а частицы обладают удобной для укладки формой и высокой подвижностью, они легко находят свое место. Если же резко снизить подвижность частиц с низкой симметрией, то они «застывают» как попало, образуя прозрачную массу, похожую на стекло. Такое состояние вещества так и называют – стеклообразным. Примером может служить обычное оконное стекло. Если стекло долго держать сильно нагретым, когда частицы в нем достаточно подвижны, в нем начнут расти кристаллы силикатов. Такое стекло теряет прозрачность. Стеклообразными могут быть не только силикаты. Так, при медленном охлаждении этилового спирта он кристаллизуется при температуре –113,3° С, образуя белую снегообразную массу. Но если охлаждение вести очень быстро (опустить тонкую ампулу со спиртом в жидкий азот с температурой –196° С), спирт застынет так быстро, что его молекулы не успеют построить правильный кристалл. В результате получится прозрачное стекло. То же происходит и с силикатным стеклом (например, оконным). При очень быстром охлаждении (миллионы градусов в секунду) даже металлы можно получить в некристаллическом стеклообразном состоянии.

Трудно кристаллизуются вещества с «неудобной» формой молекул. К таким веществам относятся, например, белки и другие биополимеры. Но и обычный глицерин, который имеет температуру плавления +18° С, при охлаждении легко переохлаждается, постепенно застывая в стеклообразную массу. Дело в том, что уже при комнатной температуре глицерин очень вязкий, а при охлаждении становится совсем густым. При этом несимметричным молекулам глицерина очень трудно выстроиться в строгом порядке и образовать кристаллическую решетку.

Copyright MyCorp © 2024
Бесплатный хостинг uCoz